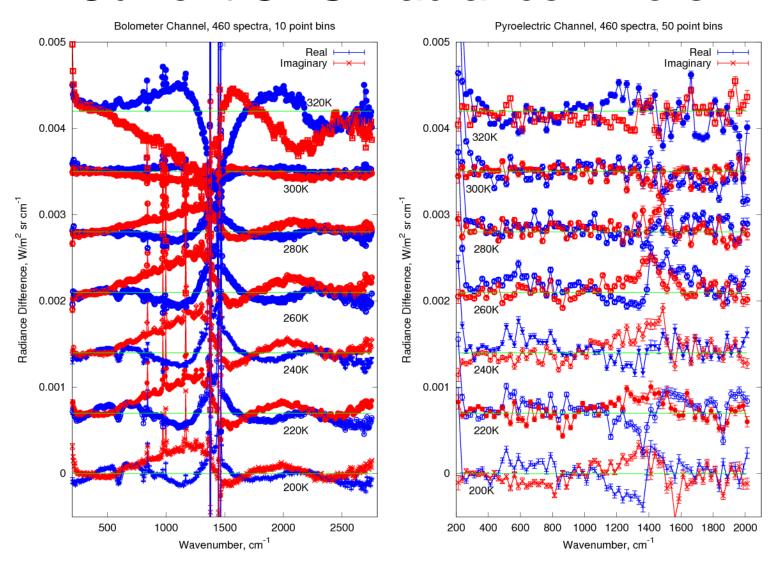


IR CDS Status/Plans and IR Instrument Design

October 28, 2014

CLARREO SDT Meeting

Dave Johnson Rich Cageao


Infrared Calibration Demonstration System (CDS)

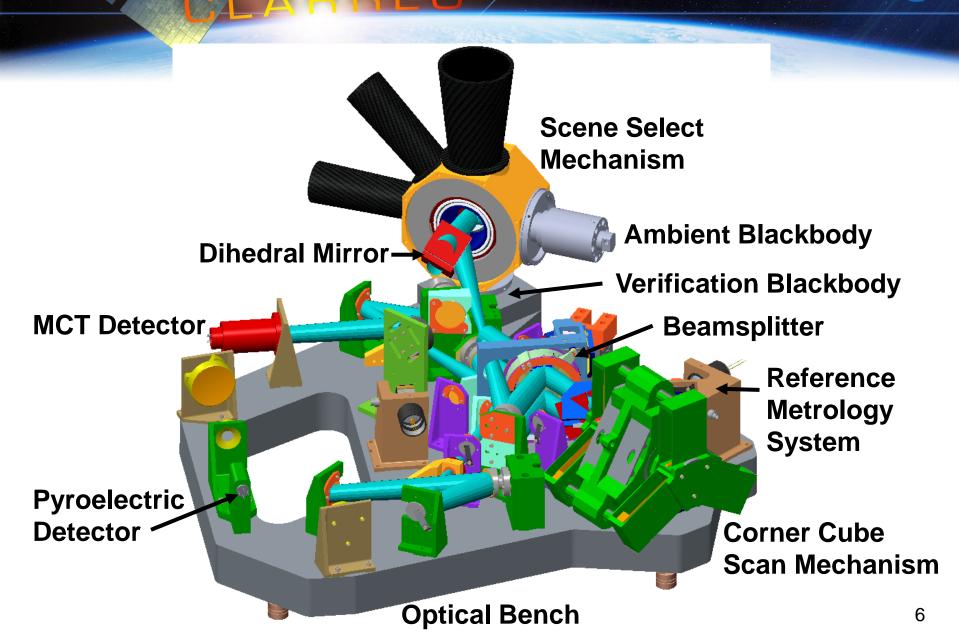
- Fabrication complete for HgCdTe detector channel; all parts received (July 2014).
 - Will determine flight-like detector radiometric accuracy from 1200-2000 cm⁻¹.
- Completed integration and testing of distributed feedback laser metrology system (July 2014).
 - Reduces mass and power of metrology system by 0.8 kg and 3.4W, respectively.

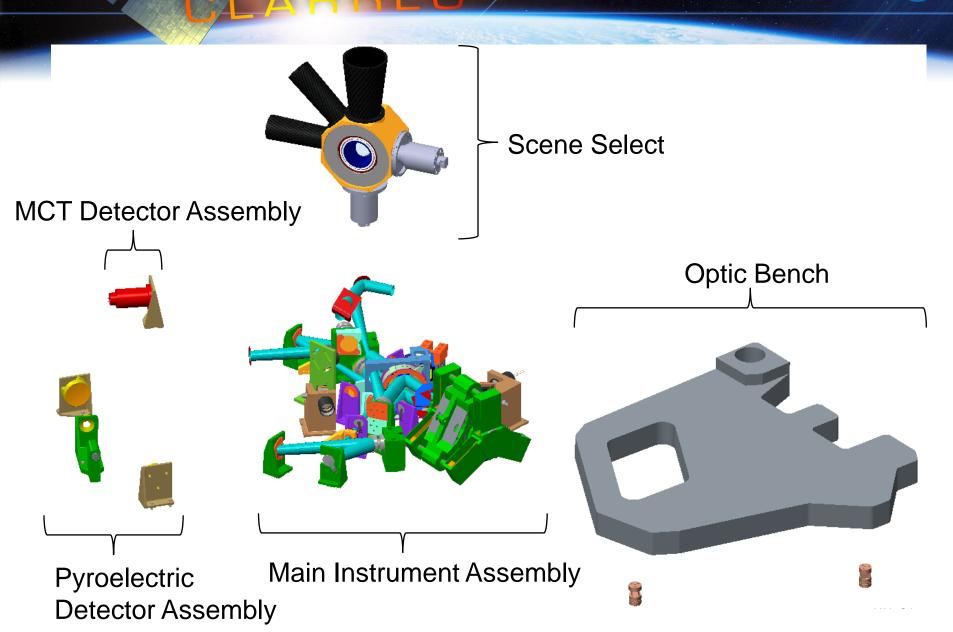
Current CDS Radiance Errors

IR Instrument Redesign Goal and Assumptions

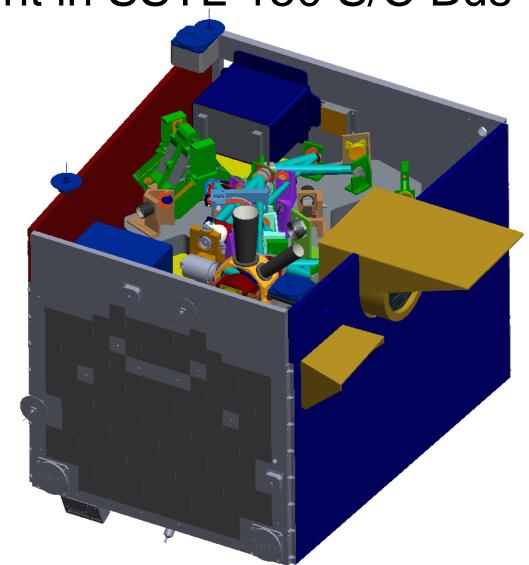
- Design low cost mission that still produces useful science.
- Use RSDO Catalog SSTL-150 spacecraft bus from Surrey Satellite Technology US, LLC.
 - Enables use of Pegasus L/V
 - S/C Bus is inexpensive,
 but provides limited resources:
 - 50 kg payload capacity.
 - 100 W payload power (peak.)

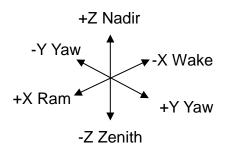
IR instrument MCR design, for comparison:


- 76 kg payload mass (CBE.)
- 124 W average, 233 W peak power (CBE.)

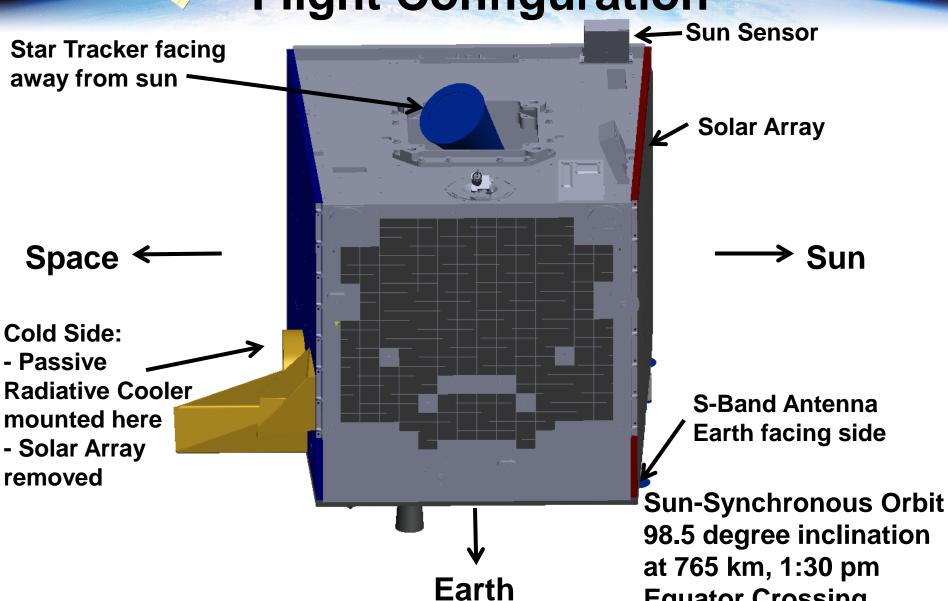

Instrument Design Change Summary

- Orbit: Sun-synch instead of polar.
- Packaging:
 - Rotate input polarization 45° and mount instrument flat to nadir deck.
 - Change SSM to cross-track and add in-track motion compensation.
 - Passively cooled BB & MCT detectors, no active control optical bench
- Calibration and verification system:
 - Eliminate QCL and integrating sphere used for ILS measurement and single-wavelength emissivity measurement.
 - Change 45° space view to 45° off-nadir view and get space view with spacecraft roll.
 - Operate verification BB at a single cold temperature only.
 - Passive cooling for MCT detectors





IR Instrument in SSTL-150 S/C Bus



Equator Crossing

Flight Configuration

Orbit Change

- MCR mission design based on true polar orbit.
- Switch to sun synch orbit.

Engineering benefits:

- Design simplified by having cold and solar illuminated sides.
- Maximize available power without requiring solar panel gimbal.
- Enable use of passive 80K cooler for MCT detectors, reducing cost, mass, and power requirements.

Science impact:

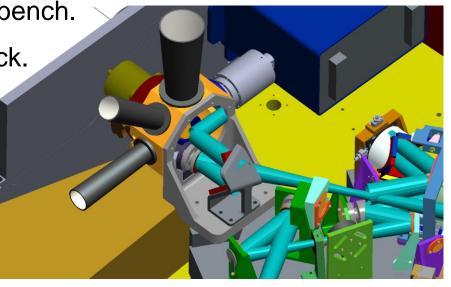
- Reduced intercalibration opportunities for most other satellites.
- Lose diurnal coverage for benchmark and fingerprinting.

Other Orbit Change Benefits

- Enables passive thermal design
 - MCR design included active instrument temperature control.
 - New design will use passive thermal as demonstrated by CrIS:
 - CrIS is mounted on the nadir deck of a sun synch platform.
 - NPP CrIS is very stable.
- Intercalibration opportunities with other sounders:
 - JPSS (1:30 pm, 830 km) and AQUA (1:30 pm, 705 km) have extended overpasses every few days.
 - SNOs with other sun synch orbits occur at ~±73.5°

Input Polarization

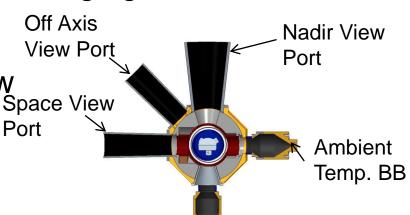
- MCR concept had primary views at 45° relative to bench.
 - Eliminates polarization-induced calibration errors.
 - Instrument mounted 45° relative to nadir deck to get a nadir view.
- Introduce dihedral to rotate polarization 45°


Now primary views aligned with bench.

Instrument aligned with nadir deck.

Engineering benefit:

 Simplified package with
 reduced mass


Science impact: None.

Alternate Space View

- MCR design included 45° off-zenith space view:
 - Used with zenith space view to quantify polarization errors.
- Switch to 45° off-nadir view:
 - Combine with spacecraft roll to get space view
- Engineering benefit: simplified packaging
- **Science/Engineering impact:**
 - Polarization measurement now requires spacecraft maneuver.

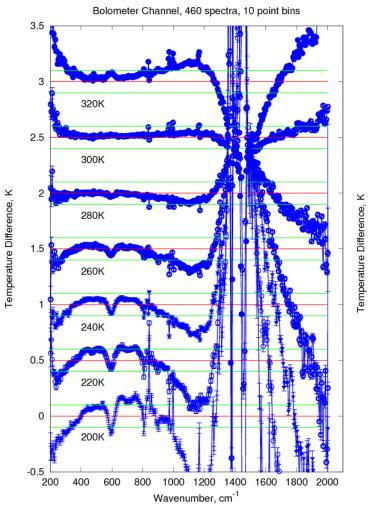
Variable

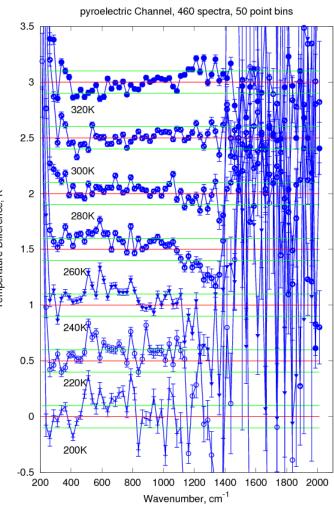
Scene Select Mechanism Change

- MCR design provides single axis scene select mechanism:
 - Selects nadir, calibration blackbody, space, and verification views.
 - Also provides earth scene motion compensation.
 - Rationale: single axis of motion believed to be simpler and cheaper.
- Redesign provides separate in-track motion compensation:
 - Large-range, low-accuracy cross-track scene select motion provided via stepper motor
 - Small-range high-accuracy in-track motion compensation provided via voice coil motor
 - Space view in cross track direction avoids ram, wake, and zenith.
- Engineering benefit: Simplified package at reduced mass.
- Science impact: None.

QCL and Integrating Sphere

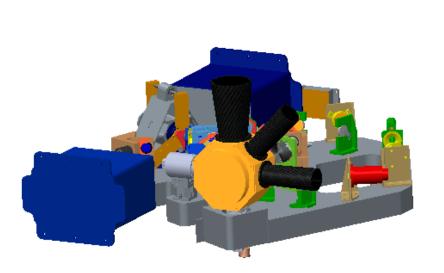
- MCR design includes quantum cascade laser, used for:
 - Single-wavelength blackbody reflectivity measurement.
 - Instrument line shape measurement (ILS; with integrating sphere.)
- New design removes QCL and integrating sphere.
- Engineering benefit: Reduced mass, power, & thermal load
- Science impact: Minimal
 - Heated halo provides spectral reflectivity measurement.
 - ILS (at multiple wavelengths) can still be derived from atmospheric spectra.


Verification Blackbody Temperature


- MCR verification blackbody (VBB) operates at multiple temperatures from 203K to 323K.
- Switch to single temperature VBB for nonlinearity check:
 - Add phase change cell (PCC) to calibration blackbody (CBB).
 - Errors approach zero for T(VBB) = T(CBB).
 - Errors on CDS increase systematically as T(VBB) decreases
- Engineering benefits: Reduced complexity and power
- Science impact: incomplete mapping of nonlinearity

Example of CDS errors

Calibration blackbody temperature is approximately 303K. Errors increase toward 200K.


MCT Detector Passive Cooler

New thermal design for MCT detectors will use a passive radiator similar to SCISAT ACE:

- Small focal plane, 80K temperature
- Radiator faces out on anti-sun side in sun synch orbit

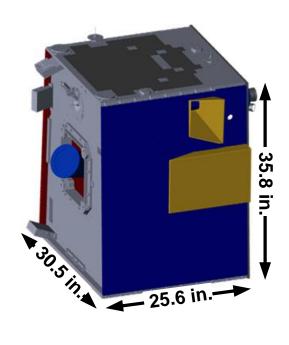
Summary of IR Design Changes

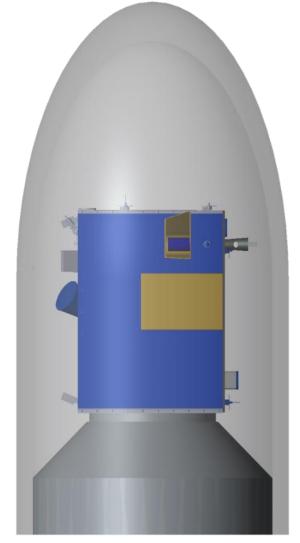
New design:

Mass: 44.8 kg (CBE, w/ cover, radiators,

and cables)

Power: 75W ave, 102W peak


MCR design:


Mass: 76 kg

Power: 124W ave, 233W peak

Payload Integration

			IBON 1	30 LT Sunsv	nch Missi	on plus pa	n plus parallel RS 90 deg mission			
			IIIOI I	oo Er oano,		1 IR FTS	1 Solar	1 GPS	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
			Reference			per S/C	per S/C	per S/C		
			Intercalibration		Climate	1 S/C	1 S/C	1 S/C	Total	
CLARREO	Related	Science	& Spectral	Calibration	Record	1 0/0	1 0/0	1 0/0	Mission	
Decadal Change	Decadal Change	Impact	Fingerprint	Verification		Trend	Trend	Trend	Science	
Science Objective	Climate Variable	Factor*	Capability	Factor	70% Prob		Accuracy		Value	
Cloud Feedback SW	Reflected SW flux, albedo	2	1.00	1.5	2.3	0	1.05	0	7.2	
Cloud I ecuback CVV	Solar Cloud Properties		1.00	1.0	2.0		1.00	Ŭ	1.2	
	Solar Cloud Froperties									
Cloud Feedback LW	Earth Emitted LW flux	1	1.00	1.0	2.3	1.03	0	0	2.3	
Cloud I eeuback EVV	IR cloud properties	'	1.00	1.0	2.0	1.00		U	2.3	
	In Cloud properties									
Cloud Feedback Net	Net Cloud Radiative Forcing	5	1.00	1.3	2.3	1.03	1.05	0	15.0	
	, tet ereaa t taaratite t erenig		1100	110	2.0	1100	1100	Ü		
Temperature Response	Temperature Profile	3	1.00	1.5	2.3	1.03	0	1	10.4	
& Lapse Rate Feedback	l l l l l l l l l l l l l l l l l l l		1100				-			
Water Vapor Response	Water Vapor Profile	3	1.00	1.5	2.3	1.03	0	0.2	12.6	
& Water Vapor Feedback	Trater raper reme		.100		2.0			5.2	12.0	
Aerosol Direct	Aerosol Radiative Forcing	1.5	1.00	1.5	2.3	0	1	0	5.1	
Radiative Forcing	Aerosol Properties					-	-	-		
	·									
Snow & Ice Albedo	Reflected SW flux, albedo	1.5	1,00	1.5	2,3	0	1,05	0	5.4	
Feedback	Snow/Ice Cover, Cloud Cover					-		-		
	,									
Land Albedo Change	Reflected SW flux, albedo	0.5	1.00	2	2.3	0	1.05	0	2.4	
& Radiative Forcing	,									
Vegetation Index Change	Vegetation Index	1	1.00	2	2.3	0	1.05	0	4.8	
			•	•						
Science Value of Individ	dual Components (IR, RS, I	RO from 0	COSMIC and oth	ner RO miss	ions)	18.2	24.9	7.2		
Science Value of combined IR/RS science (net cloud feedback)						1:	5.0			
Total Mission Science Value Metric									65.2	
Percent of Mission Science Value of Individual Components (IR, RS, RO)						28%	38%	11%		
Percent of Mission Science Value of combined IR/RS science							3%	, •		
Total Mission Science Value as Percent of CLARREO MCR Mission							, , ,		85%	
Total Mission Science	dide as i cicent of OLANN		1111331011						00 /0	